
Week 10 - Wednesday



 What did we talk about last time?
 Finished serialization
 Internet
 Networking









 A TCP/IP connection between two hosts (computers) is 
defined by four things
 Source IP
 Source port
 Destination IP
 Destination port

 One machine can be connected to many other machines, but 
the port numbers keep the different connections straight



 Using sockets is usually associated with a client-server model
 A server is a process that sits around waiting for a connection
 When it gets one, it can do sends and receives

 A client is a process that connects to a waiting server
 Then it can do sends and receives

 Clients and servers are processes, not computers
 You can have many client and server processes on a single machine



 To create a server socket, we instantiate a ServerSocket
object with the port that the server will listen on

 That creates the server, but then we have to try to accept a 
connection

 The accept() method is a blocking method that will wait 
for a client to try to connect

ServerSocket serverSocket = new ServerSocket(port);

Socket socket = serverSocket.accept();



 The server sits there, waiting for a client to connect
 Until that happens, the accept() method will not return
 When it does return, it will return with a socket that can be 

used for communicating with the client

Server Client

Requesting connection…



 The client code to connect to a listening server is:

 Where address is a String containing either a legal IP 
address (like "174.103.113.51") or a legal domain name 
(like "otterbein.edu")

 And port is the appropriate port number
 Remember that this code is running in a different program, 

very likely on a different computer

Socket socket = new Socket(address, port);



 As we discussed before, many port numbers are already reserved 
for specific applications
 20 and 21: File Transfer Protocol (FTP)
 22: Secure Shell (SSH)
 80: Hypertext Transfer Protocol (HTTP)

 If you're writing a tool that uses one of those protocols, use the 
correct port

 If you're writing something else, make sure you don't use a port 
reserved for something else
 Definitely use port 1024 or higher, since below 1024 are pretty much taken 

up



 It's inconvenient to need two different computers to write 
network code

 For testing purposes, you can often use a single computer as both 
the server and the client

 To do so, you need to connect to yourself
 What's your IP address?
 Well, it might always be changing
 To make things simpler, there's a loopback IP address that always 

refers to the computer you're currently on: 127.0.0.1
 The IPv6 loopback address is ::1 (where :: is notation that 

means "fill in with appropriate numbers of zeroes")



 Now that you've got sockets, what are you going to do with 
them?

 Sockets allow for two-way communication
 You can get an input stream (that you can read from) and an 

output stream (that you can write to)
 These streams can be used where you might have used a file 

object or a stream created from a file
 From this point on, using sockets looks a lot like using file I/O



 Let's say you have a socket and you want to read some text from it
 Make a Scanner using its input stream:

 Then, you can read text just like you would from any other Scanner:

 Creating a socket and getting its input stream can both throw an 
IOException, needing a throws or a try-catch, which I'm leaving 
out for simplicity

Scanner netIn = new Scanner(socket.getInputStream());

int value = netIn.nextInt();



 Or maybe you want to write some text across the network
 Make a PrintWriter using its output stream:

 Then, you can print text just like you would from System.out:

 Again, getting the output stream can throw an IOException if 
something's wrong

PrintWriter netOut = new PrintWriter(socket.getOutputStream());

netOut.println("That's what she said.");



 The previous two slides showed ways to use a socket to make a Scanner
for text input or a PrintWriter for text output

 But you can just as easily send and receive binary data across a network 
connection

 Using a socket's input stream, you could create a DataInputStream or 
an ObjectInputStream

 Similarly, using a socket's output stream you could create a 
DataOutputStream or an ObjectOutputStream

DataInputStream netIn = new DataInputStream(socket.getInputStream());

DataOutputStream netOut = new DataOutputStream(socket.getOutputStream());



 Write a server that listens on port 4444
 When it accepts a connection, it creates a Scanner to read 

from the socket
 It reads lines of text and prints them to the screen until it gets 
"quit"



 Write a client that connects to a server at the loopback 
address on port 4444

 It creates a PrintWriter to writer to the socket
 It reads lines of text from the user and sends them to the 

socket until the user enters "quit"
 It sends this final message and then closes the socket







 Review



 Work on Project 3
 Project 3 is now due on April 3

 Review everything after Exam 1
 Exam 2 will be on Monday, March 30


	COMP 2000
	Last time
	Questions?
	Project 3
	Socket Communication
	TCP/IP
	Clients vs. servers
	Creating a server socket in Java
	Listening server
	Connecting to a listening server
	Port numbers
	Loopback IP address
	Using the sockets
	Socket for input
	Socket for output
	Text or binary data: You pick
	Server example
	Client example
	Quiz
	Upcoming
	Next time…
	Reminders

