Week 10 - Wednesday

COMP 2000




= What did we talk about last time?
= Finished serialization

= |nternet

= Networking



Questions?




Project 3




Socket Communication




= ATCP/IP connection between two hosts (computers) is
defined by four things

= Source IP

= Source port
= Destination IP
= Destination port

= One machine can be connected to many other machines, but
the port numbers keep the different connections straight



= Using sockets is usually associated with a client-server model
= A server is a process that sits around waiting for a connection

= When it gets one, it can do sends and receives
= A client is a process that connects to a waiting server

= Then it can do sends and receives
= Clients and servers are processes, not computers

= You can have many client and server processes on a single machine



= To create a server socket, we instantiate a ServerSocket
object with the port that the server will listen on

ServerSocket serverSocket = new ServerSocket (port) ;

= That creates the server, but then we have to try to accept a
connection

Socket socket = serverSocket.accept()

= The accept () method is a blocking method that will wait
for a client to try to connect




= The server sits there, waiting for a client to connect

= Until that happens, the accept () method will not return

= When it does return, it will return with a socket that can be
used for communicating with the client

Server Client

Requesting connection...



= The client code to connect to a listening server is:

Socket socket = new Socket (address, port);

» Where address is a String containing either a legal IP
address (like "174.103.113.51") or alegal domain name
(like "otterbein.edu")

= And portisthe appropriate port number

= Remember that this code is running in a different program,
very likely on a different computer



= As we discussed before, many port numbers are already reserved
for specific applications
= 20and 21: File Transfer Protocol (FTP)
= 22: Secure Shell (SSH)

= 80: Hypertext Transfer Protocol (HTTP)
= If you're writing a tool that uses one of those protocols, use the

correct port
= If you're writing something else, make sure you don't use a port

reserved for something else
= Definitely use port 1024 or higher, since below 1024 are pretty much taken
up



It's inconvenient to need two different computers to write
network code

For testing purposes, you can often use a single computer as both
the server and the client

To do so, you need to connect to yourself

What's your IP address?

Well, it might always be changing

To make things simpler, there's a loopback IP address that always
refers to the computer you're currentlyon: 127.0.0.1

The IPv6 loopback address is : : 1 (where : : is notation that
means "fill in with appropriate numbers of zeroes")



= Now that you've got sockets, what are you going to do with
them?

= Sockets allow for two-way communication

= You can get an input stream (that you can read from) and an
output stream (that you can write to)

= These streams can be used where you might have used a file
object or a stream created from a file

= From this point on, using sockets looks a lot like using file I/O



= Let's say you have a socket and you want to read some text from it
= Make a Scanner using its input stream:

Scanner netIn = new Scanner (socket.getInputStream())

= Then, you can read text just like you would from any other Scanner:

int value = netIn.nextInt();

= Creating a socket and getting its input stream can both throw an
TIOException, needing a throws ora try-catch, which I'm leaving
out for simplicity




= Or maybe you want to write some text across the network
= Make a PrintWriter using its output stream:

PrintWriter netOut = new PrintWriter (socket.getOutputStream()) ;

= Then, you can print text just like you would from System. out:

netOut.println("That's what she said.");

= Again, getting the output stream can throw an IOException if
something's wrong



= The previous two slides showed ways to use a socket to make a Scanner
for text input ora PrintWriter for text output

= But you can just as easily send and receive binary data across a network
connection

= Using a socket's input stream, you could create aDataInputStreamor
an ObjectInputStream

DataInputStream netIn = new DatalInputStream(socket.getInputStream()) ;

= Similarly, using a socket's output stream you could create a
DataOutputStreamoran ObjectOutputStream

DataOutputStream netOut = new DataOutputStream(socket.getOutputStream()) ;




= Write a server that listens on port 4444

= When it accepts a connection, it creates a Scanner to read
from the socket

= |t reads lines of text and prints them to the screen until it gets

"quit"



= Write a client that connects to a server at the loopback
address on port 4444

= [t creates a PrintWriter to writer to the socket

= It reads lines of text from the user and sends them to the
socket until the user enters "quit"

= |t sends this final message and then closes the socket






Upcoming




= Review



= Work on Project 3
= Project 3 i1s now due on April 3
= Review everything after Exam 1
= Exam 2 will be on Monday, March 30



	COMP 2000
	Last time
	Questions?
	Project 3
	Socket Communication
	TCP/IP
	Clients vs. servers
	Creating a server socket in Java
	Listening server
	Connecting to a listening server
	Port numbers
	Loopback IP address
	Using the sockets
	Socket for input
	Socket for output
	Text or binary data: You pick
	Server example
	Client example
	Quiz
	Upcoming
	Next time…
	Reminders

