
Week 10 - Wednesday



 What did we talk about last time?
 Finished serialization
 Internet
 Networking









 A TCP/IP connection between two hosts (computers) is 
defined by four things
 Source IP
 Source port
 Destination IP
 Destination port

 One machine can be connected to many other machines, but 
the port numbers keep the different connections straight



 Using sockets is usually associated with a client-server model
 A server is a process that sits around waiting for a connection
 When it gets one, it can do sends and receives

 A client is a process that connects to a waiting server
 Then it can do sends and receives

 Clients and servers are processes, not computers
 You can have many client and server processes on a single machine



 To create a server socket, we instantiate a ServerSocket
object with the port that the server will listen on

 That creates the server, but then we have to try to accept a 
connection

 The accept() method is a blocking method that will wait 
for a client to try to connect

ServerSocket serverSocket = new ServerSocket(port);

Socket socket = serverSocket.accept();



 The server sits there, waiting for a client to connect
 Until that happens, the accept() method will not return
 When it does return, it will return with a socket that can be 

used for communicating with the client

Server Client

Requesting connection…



 The client code to connect to a listening server is:

 Where address is a String containing either a legal IP 
address (like "174.103.113.51") or a legal domain name 
(like "otterbein.edu")

 And port is the appropriate port number
 Remember that this code is running in a different program, 

very likely on a different computer

Socket socket = new Socket(address, port);



 As we discussed before, many port numbers are already reserved 
for specific applications
 20 and 21: File Transfer Protocol (FTP)
 22: Secure Shell (SSH)
 80: Hypertext Transfer Protocol (HTTP)

 If you're writing a tool that uses one of those protocols, use the 
correct port

 If you're writing something else, make sure you don't use a port 
reserved for something else
 Definitely use port 1024 or higher, since below 1024 are pretty much taken 

up



 It's inconvenient to need two different computers to write 
network code

 For testing purposes, you can often use a single computer as both 
the server and the client

 To do so, you need to connect to yourself
 What's your IP address?
 Well, it might always be changing
 To make things simpler, there's a loopback IP address that always 

refers to the computer you're currently on: 127.0.0.1
 The IPv6 loopback address is ::1 (where :: is notation that 

means "fill in with appropriate numbers of zeroes")



 Now that you've got sockets, what are you going to do with 
them?

 Sockets allow for two-way communication
 You can get an input stream (that you can read from) and an 

output stream (that you can write to)
 These streams can be used where you might have used a file 

object or a stream created from a file
 From this point on, using sockets looks a lot like using file I/O



 Let's say you have a socket and you want to read some text from it
 Make a Scanner using its input stream:

 Then, you can read text just like you would from any other Scanner:

 Creating a socket and getting its input stream can both throw an 
IOException, needing a throws or a try-catch, which I'm leaving 
out for simplicity

Scanner netIn = new Scanner(socket.getInputStream());

int value = netIn.nextInt();



 Or maybe you want to write some text across the network
 Make a PrintWriter using its output stream:

 Then, you can print text just like you would from System.out:

 Again, getting the output stream can throw an IOException if 
something's wrong

PrintWriter netOut = new PrintWriter(socket.getOutputStream());

netOut.println("That's what she said.");



 The previous two slides showed ways to use a socket to make a Scanner
for text input or a PrintWriter for text output

 But you can just as easily send and receive binary data across a network 
connection

 Using a socket's input stream, you could create a DataInputStream or 
an ObjectInputStream

 Similarly, using a socket's output stream you could create a 
DataOutputStream or an ObjectOutputStream

DataInputStream netIn = new DataInputStream(socket.getInputStream());

DataOutputStream netOut = new DataOutputStream(socket.getOutputStream());



 Write a server that listens on port 4444
 When it accepts a connection, it creates a Scanner to read 

from the socket
 It reads lines of text and prints them to the screen until it gets 
"quit"



 Write a client that connects to a server at the loopback 
address on port 4444

 It creates a PrintWriter to writer to the socket
 It reads lines of text from the user and sends them to the 

socket until the user enters "quit"
 It sends this final message and then closes the socket







 Review



 Work on Project 3
 Project 3 is now due on April 3

 Review everything after Exam 1
 Exam 2 will be on Monday, March 30


	COMP 2000
	Last time
	Questions?
	Project 3
	Socket Communication
	TCP/IP
	Clients vs. servers
	Creating a server socket in Java
	Listening server
	Connecting to a listening server
	Port numbers
	Loopback IP address
	Using the sockets
	Socket for input
	Socket for output
	Text or binary data: You pick
	Server example
	Client example
	Quiz
	Upcoming
	Next time…
	Reminders

